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LElTER TO THE EDITOR 

Distribution of local magnetisations in random 
networks of automata 

B DerridatS and H FlyvbjergOII 
t Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA 
8 Service de Physique Thkorique, CEN Saclay, F-91191 Gif-sur-Yvette, France. 

Received 7 September 1987 

Abstract. We derive an integral equation which gives the distribution P ( m )  of local 
magnetisations for a random network of automata (Kauffman model). We show how from 
this distribution one can recover the distances between configurations and the fraction of 
spins in the stable core (i.e. the spins which do not depend on the initial conditions). A 
numerical solution of the integral equation shows that P ( m )  has singularities at m =0,  *i 
and * l .  

The dynamics of neural networks and of automata have been much studied recently 
both by numerical and analytical methods (see Bienenstock et a1 (1986) for a recent 
review). Networks of automata can be defined as systems of N Ising spins S, = -1  or 
1 which evolve according to 

Si( t+  1 )  =f ; (s , , , i , ( t ) ,  * * 9 s,k(i)(l)). ( 1 )  

A sample network is specified by giving each site i, a function f ;  of k variables and 
its input sites j l ( i ) ,  . . . , j k ( i ) .  Usually the number k of inputs is the same for all sites 
i but networks with a number of inputs depending on i can also be considered. 

Among all the possible models of automata (Wolfram 1983), there is a class of 
model (Kauffman 1969, 1970, 1974) for which some exact results concerning the time 
evolution can be obtained (Derrida and Weisbuch 1986, Hilhorst and Nijmeijer 1987, 
Flyvbjerg and Kjaer 1987). These automata are characterised by the fact that the inputs 
j l ( i ) ,  . . . , j k ( i )  of each site i are randomly chosen among the N sites. Depending on 
the choice of the functionsf;, one can study the Kauffman model (Derrida and Weisbuch 
1986), a non-symmetric spin glass (Derrida 1987a, b), neural network models (Derrida 
et a1 1987, Kiirten 1987). This class of model is soluble because the inputsj,( i ) ,  . . . , j k (  i) 
are chosen at random. This allows one to show that some quantities (distances, 
magnetisations, projections on stored patterns) have exactly the same time evolution 
for the annealed model for which the functions f ;  and the inputs are changed at each 
time step and for the quenched model for which the functions f ;  and the inputs 
j l ( i ) ,  . . . , j k ( i )  remain fixed (Derrida and Weisbuch 1986, Hilhorst and Nijmeijer 1987). 
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[I Present address: The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copen- 
hagen 0, Denmark. 

0305-4470/87/ 161 107 + 06$02.50 0 1987 IOP Publishing Ltd L1107 



L1108 Letter to the Editor 

A system of N automata has 2 N  possible configurations. If one chooses an  initial 
condition CO 

CO= {S,(O), * 1 * , S N ( 0 ) )  ( 2 )  

with a certain probability distribution po( CO), one can define an  average magnetisation 
m , ( t )  of spin i at time t 

m d t )  = (s , ( t ) )  (3 )  

where S , ( t )  is related to S,(O) by (1) and where ( ) means an  average over initial 
conditions (configuration CO has a weight po(Co)). The purpose of the present work 
is to show that, for the class of soluble models defined above, one can calculate the 
probability distribution P,( m) of local magnetisations defined by 

Our results are valid under the following two conditions. 
(i) The thermodynamic limit N + 00 is taken. 
(ii) We restrict our calculations to the case of uncorrelated spins in the initial 

condition 

If one wants to compute the value of a spin S , ( t + l )  at time t + l ,  one needs to 
know the whole tree of its 1 + k + k 2  + . . . + k'*' ancestors (its inputs at  time t ,  the 
inputs of its inputs at time t - 1, and  so on up to time t = 0). Because all these inputs 
are chosen at random among the N sites, for almost all sites i, all the sites in the tree 
of its ancestors are different if N+cc (Derrida and Weisbuch 1986). Therefore, for 
almost all sites i, its inputs j , (  i ) ,  . . . , J k ( i )  at time t are uncorrelated and the probability 
that these inputs take the values S,,, . . . , S,, can be factorised: 

(l+m;(t)s,L) . . .  ( l + m , k ( t ) s , k )  
2 

Therefore for almost all sites i (i.e. in the limit N + a), m,(  t )  is given by 

Since ( 7 )  is true for almost all sites i, one can write the following recursion relations 
for P l ( m )  

P , + , ( m )  =I Q ( f )  . . . d m ,  . . . dmk p , ( m l ) .  . . P , ( m , )  
I 

= 6  m -  1 . . .  1 (7) 1 + m , S ,  ...(-)f( 1 + mkSk SI , . . .  S k ) ]  (8) E S,=-t l  Sk=rl  

where the sum overf is the sum over all the possible Boolean functionsf of k variables 
and Q ( f )  is the probability of the Boolean function f: The average over Q(f) comes 
from the fact that, in the limit N + 00, there are N Q ( f )  sites i which have a certain 
function f: 
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One should notice that, depending on Q(f), P,( m )  may or may not have a limiting 
value in the long-time limit and that this limit may depend on the initial condition 
P o ( m ) .  It is also important to notice that the condition ( 5 )  that the spins Si are 
uncorrelated in the initial configuration was essential to derive (7) and (8). 

In the following we will restrict our discussion to the Kauffman model (1969) which 
is characterised by the fact that all the Boolean functions of k variables have the same 
probability ( Q ( f )  = 2-2h). One can, however, easily generalise the results to other cases 
(neural networks, non-symmetric spin glasses, etc). 

The knowledge of P,( m )  allows the calculation of several interesting properties of 
the model. For example, one can calculate the generalised distance x, between n 
configurations. If one chooses at time t = 0, n random initial configurations with the 
probability (5) ,  one can define Nx,( t )  as the number of spins i which are identical in 
the n configurations at time t .  If P , ( m )  is known, then x,(t) is given by 

x, ( t )  = I dm P,( m )  [ ( y) + ( y) '1. (9) 

This formula can easily be understood. If site i has magnetisation m , ( t ) ,  this means 
that for a randomly chosen initial configuration S,( t )  = + 1 with probability ( 1  + m,( t ) ) /2 
and - 1  with probability ( 1  - mi(t))/2. The probability that site i is identical in the n 
configurations is therefore [( 1 + m,( t))/2]" + [( 1 - m,( r))/2]". 

So we see that the information contained in x,,  x2. .  . . , x, is the same as in the 
first n moments of P f ( m ) .  For the Kauffman model, it had been shown (Derrida and 
Weisbuch 1986) that the x, for odd i are related to the even ones and that the time 
evolution of x2 and x4 is given by 

x2(t+ 1) =f[l  +(x2( t ) ) k ]  

x4( f + 1 )  = 9+i(x2( t ) ) k  +5( 1 - 2x,( t )  + 2x4( t ) ) k  -$(x4( t ) ) k .  

(loa) 

( lob)  
From ( 7 )  and (8) one can compute the moments p , ( t )  of P , ( m )  

p, ( t )  = dm P f ( m ) m "  I 
and one finds 

Of course from (9) one can easily check that (12a) and (12b) are equivalent to ( l o a )  
and ( lob) .  We see that the integral equation (8) allows the calculation of all the 
moments p, and x,. In particular, it allows the calculation of the stable core s ( t )  
which is the fraction of spins at time t which do not depend on the initial condition 

s ( t ) =  lim x,(t)=lim pzp(r).  
n-w P" 
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s( t )  is nothing but the fraction of spins which are such that mi( t )  = + 1  or m,( t )  = - 1 .  
Using the recursion (8) and separating the contribution of the delta functions at + 1  
and - 1  in P , ( m )  

P, ( m )  = t s ( t )  [ S ( m  - 1 )  + S ( m  + 113 + P, ( m )  (14) 

one obtains for the time evolution of s ( t ) :  

k !  
s ( t + l ) =  (s(r))k-p(l -s( t))p2’-2P. 

p = o  ( k - p ) ! p !  

This formula can easily be derived directly (Flyvbjerg 1987) by noticing that the pth 
term in the sum (15) corresponds to a site i which has k - p  inputs in the stable core 
at time t. For this spin i to be in the stable core at time t + 1 ,  one needs that the 
function 1; does not depend on the p remaining spins. The probability of such a 
function 1; is 2‘”‘. 

In principle the shape of P , ( m )  can be obtained from the integral equation (8). In 
practice, the calculation of the p,, becomes more and more difficult as n increases. In 
order to obtain the shape of P I (  m )  in the limit t + CO, we used a Monte Carlo method. 
This method is nothing but the simulation of the annealed version of the Kauffman 
model for which P , ( m )  is also given by (8). We considered a sample of N values of 
m, chosen at random at t = 0. At each time step, we choose for each i a new function 
1; and k inputs at random and then we use (7) to compute the new m,. We did our 
calculations for k = 3 both for N = 10’ spins with lo4 iterations and for N = lo4 spins 
with lo3 iterations. The results were identical within statistical errors. In both cases 
P,( m )  was obtained as the histogram of the m, of the lo7 sites. All these calculations 
were done after a ‘thermalisation time’ of typically 103-104 iterations (to get the limit 
t + CO and thus) to eliminate the dependence on initial conditions. From these simula- 
tions we obtained estimates for the moments F ~ ( C O ) ,  p4(w), p6(a0) and for the stable 
core ~ ( c o )  in excellent agreement with the fixed points of (12) and (15 ) .  For example 
we obtained s(m) = 0.012 196*0.000 03 by this Monte Carlo procedure whereas the 
fixed point of (15 )  for k = 3 is 0.012 2261. We obtained also the shape of Pc(m),  i.e. 
the part of P w ( m )  which does not include the S functions at k l ,  as shown in figure 1 .  

O l  
-1.0 -0.5 0 0.5 1.0 

m 

Figure 1. The continuous part of P.,(m) for the KauRman model for k = 3. 
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We see that, in addition to the 6 functions at m = -1  and 1, P ( m )  exhibits visible 
singularities at m = 0, m = *; and m = * 1. We think that these singularities at m = 0, 
if and f 1 are not delta functions because they did not change when we increased 
the number of time steps, the system size or the number of bins to describe our 
histogram. Thus P,(m)  has a rather complex structure which becomes even more 
complicated in finite dimension (Derrida 1986). 

We did not find a way of calculating analytically the shapes and the locations of 
these singularities from the integral equation (8 ) .  However such singularities in P (  m )  
are not very surprising since similar singularities have already been found and explained 
in solutions of simple integral equations (Derrida and Flyvbjerg 1987). 

In this letter we have seen how one can write an integral equation (8) for P ( m ) .  
We have also seen how from this integral equation one can deduce the fraction of 
spins in the stable core, i.e. the spins which do not depend on the initial conditions. 
These calculations could easily be generalised to other problems like non-symmetric 
spin glasses, neural network models, etc. The only thing to change would be the 
weights Q ( f )  of the Boolean functions in the integral equation (8). 

To compute P ( m ) ,  it was necessary to start with a distribution ( 5 )  of initial 
conditions for which the spins are uncorrelated. It would of course be interesting to 
investigate the case of correlated spins in the initial conditions. It would also be 
interesting to understand the origin of the visible singularities at m = 0, *; and * 1 in 
P ( m ) .  Integral equations similar to (8) have already been considered in the study of 
spin glasses on Bethe lattices (Bowman and Levin 1982, Thouless 1986). In that 
problem too, it has been recently suggested that correlations in the boundary conditions 
(which play the role of initial conditions in automata problems) could have an important 
effect (Mottishaw 1987). 

The shape of P ( m )  (delta functions and continuous part) is also very reminiscent 
of the distribution of local fields in the mean field theory of spin glasses with finite 
connectivity (Orland 1985, Viana and Bray 1985, Kanter and Sompolinsky 1987, De 
Dominicis and Mottishaw 1987, Mezard and Parisi 1987). This strengthens the idea 
that spin glasses and automata have many features in common (Derrida and Flyvbjerg 
1986). 

We thank P Mottishaw for discussions about the relationship with spin glasses on 
Bethe lattices. H F  thanks the Service de Physique ThCorique at Saclay for its hospitality. 
This research was supported in part by the National Science Foundation under Grant 
no PHY82-17853, supplemented by funds from the National Aeronautics and Space 
Administration, at the University of California at Santa Barbara. 
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